Female farmers of India
Design to Empower the Female Farmers of India
Designer: Jordan Westerberg Client: S4S Technologies From Core77
Designing products for multinational corporations and their alluring target markets, and designing products for low-income, rural consumers are two very different worlds. Jordan Westerberg, industrial designer with social venture development firm Factor[e], has worked in both. Through a recent project to re-imagine a solar conduction dryer for Indian farmers to better preserve and profit from their produce, Westerberg cautions against being drawn to the simplistic, feel-good product solutions – especially when designing for social impact.
Design Team
Factor[e] Ventures – (Social Venture Investment Firm) – factore.com
Dr. Vaibhav Tidke – (CEO of S4S Technologies)
Ashwin Pawade – (Co-Founder and Supply Chain Lead at S4S Technologies)
Designing products for multinational corporations and their alluring target markets is an exciting and appealing process for a designer. You’re able to work with some of the most advanced and highest-performing materials – utilizing state of the art, automated manufacturing processes. At the same time, your work is accompanied by talented research and engineering teams with product-specific experience to produce high-end, visually appealing consumables.
It’s a distinctly contrasting style of design that I now provide for the portfolio companies at Factor[e]. Not because I don’t get to work with talented teams or work with preferred materials and technology – I certainly do. It’s because I’ve learned that designing for the base of the pyramid (BoP) requires an especially focused approach.
Factor[e] Ventures, where I work as its Industrial Design Lead, is a venture development firm with a mission to improve lives in the developing world through investments in social enterprises working on access to electricity, agriculture, waste and sanitation, and sustainable mobility. We support early-stage entrepreneurs through a unique blend of risk capital and world-class technical resources. Our hands-on approach means we regularly engage with companies to help solve technical problems at a detailed level.
I joined Factor[e] eight months ago to support portfolio companies with the manufacturing, cost reduction, scalability of their products. I previously worked in physical product design and development, building and innovating upon products for clients from start-ups to Fortune 500 companies across a wide range of product markets. These markets included consumer electronics, sporting goods and lifestyle consumer goods among others and were almost exclusively marketed towards US-based, middle to upper class consumers.
Previously, I rarely had to stretch myself and my ability to build empathy in order to understand the market and consumer I was designing for. In the past, for example, while conducting design research for a US-based premium headphones company that intended on targeting mostly male consumers aged 25-35 years old with an average income of ‘X’, there could always be a few assumptions made. When meeting directly with these target consumers to understand their pain points, concerns, environment and typical use-cases, I could quickly begin to understand and formulate conclusions, because that ‘target consumer’ was often people like me.
In contrast, my work for Factor[e] has required me to go out into the field and not only get to know the entrepreneurs we support, but also profoundly understand their end consumers who all have remarkably different consumer profiles than what I was accustomed to. This is exactly howI found myself on an 8-hour journey in the back of an SUV drudging through the rugged, unpaved roads of central Maharashtra, India with our portfolio company, S4S Technologies (S4S) to meet with local farmers four months ago.
S4S Technologies is a food preservation company that invents and manufactures food processing machines and technology. My work with S4S was to help redesign their solar conduction dryer (SCD) which uses natural conduction as a primary heat transfer mode and secondary modes of convection and radiation to reduce moisture content within agri-produce. This allows users to preserve produce without any added preservatives for up to a year, all while retaining better nutritional value than open sun drying. The SCD does not require access to electricity, has no operating costs and is 3-5 times less expensive than competing solar dryers on the market, making it ideal for farmers located in rural, underdeveloped areas to earn additional profit through the sale of their dehydrated product back to S4S.
Sounds great, right? So what could be done to make it even better?
To date, S4S has currently produced around 2,500 dryers in total. Selling and operating them in India, Kenya, Sri Lanka, Jamaica, Nepal and Vietnam. Now, S4S is planning to produce over 200,000 dryers in the next five years while entering new markets. In order to do this, the SCD design needed to be reconsidered for manufacturing at a much higher volume and for a faster rate of production and assembly.
I spent two weeks getting to know the S4S team, their business model and design objectives. They set up the necessary meetings and travel accommodations to help me gain a better understanding of how the SCD is manufactured, assembled and used in the field. Together we traveled to the cities of Nasik and Aurangabad to tour their manufacturing facilities. I spoke with the manufacturers and facility workers directly to grasp a step-by-step process of how the SCD was fabricated and assembled. Afterwards, we traversed from village to village and farm to farm interviewing and interacting with the farmers who used the SCD daily.
It wasn’t long before it became clear to me that designing for this type of consumer would require a whole new approach. The farmers we met with were typically earning an average of R15k (around US$220) per acre per year. Often times, that income has to sustain them and their families for up to an entire year. Their villages were isolated from any hardware store or legitimate repair shop, making any repairs to a broken product unlikely. In the face of a severe drought that preceded this year’s monsoons, I was surprised to learn that one of the families would even ration bathing so that they would have enough water to clean the vegetables before drying them using the SCD.
It is easy to become drawn to the simplistic, feel-good product solutions – especially when designing for social impact. However, it is crucial that solutions we end up developing hold validity through conducting contextual, in-depth, design research. Indeed, “this is precisely what can make the BoP such an important learning platform for designers. Independent of any altruistic motives, engaging with the BoP can help designers and innovators gain legitimate insight,” wrote Deepa Prahalad wrote in the Harvard Business Review.
The S4S team and I were able to identify the specific manufacturing bottlenecks, component limitations and usability constraints that were in need of improvement.
This concluded what is often the most difficult, yet critical, part of the design process. Taking the time to empathize with all of the people that will interact with the product across its entire product lifecycle allowed me to turn that understanding into actionable insight and begin to improve the overall design. From there, we prioritized simplifying the manufacturing of the unit knowing that it would directly reduce cost. We turned our attention toward the side structure or “shelf” that acts as the main structural component and anchor of the entire assembly. Every additional component stems from the shelf and allows multiple SCDs to be linked together.
Because the SCDs were most often delivered as DIY kits to the farmers, the process of assembling and maintaining the unit had to be meaningfully simplified. With the new molded shelf, we were able to reduce the overall amount of hardware required, as well as reduce the assembly time and overall weight of the assembly significantly.
With the anchor component reimagined, the rest of the redesign pathway was clear. We developed a simple flange and connection rod system that utilizes the shelf as an anchor point making the assembly of one or more SCDs uncomplicated. A newly designed gate works in a hardware-less, molded track built into functional ribbing on the shelf, and is equipped with a replaceable metal screen to allow convection airflow through the dryer while keeping insects and dirt from entering.
Completing the SCD is an adjustable leg assembly mounted to the four front corners of the shelving parts. It was imperative to the entire design that we addressed the ergonomics and usability issues discovered through our design research. By integrating a simple telescoping tube steel design, users are now able to effectively adjust the height of the dryer. This eliminates the drudgery of bending that occurs when continuously loading and unloading.
This redesign, though still currently in the early stages of prototyping, is projected to cut the cost of the dryer assembly by 53% (per unit), trim the overall weight of the assembly by over 33% and significantly reduce the overall number of parts. A lighter, more affordable, and easier to use SCD should lay the groundwork for S4S to scale-up manufacturing and hit their 200,000 unit goal, but the impact of the project doesn’t end there.
As designers, we have still so much to learn from and about the BoP consumer. I began this design journey with the simple idea of increasing value by designing the SCD units to be more cost effective. However, “extreme affordability” is not enough to meet the needs of the rural women farmers that S4S partners with. The SCD also had to be genuinely usable in a challenging environment and convey a beneficial reason to, in fact, use it. The influence of good design can only be felt through the consistency of good work and the compassion we have for the people who interact with our work.
It takes a continuous effort and many iterations, but this way of design thinking has the ability to truly benefit low-income consumers, creating a more enduring impact on largely underserved communities in the process.
For more on this story go to: https://www.core77.com/projects/90257/Design-to-Empower-the-Female-Farmers-of-India?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+core77%2Fblog+%28Core77.com%29